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LUCAS PSEUDOPRIMES

ANDRZEJ ROTKIEWICZ

Abstract: Theorem on four types of pseudoprimes with respect to Lucas sequences are proved.

If n is an Euler-Lucas pseudoprime with parameters P and @ and n is an Euler pseu-
doprime to base @, (n, P) = 1, then n is Lucas pseudoprime of four kinds.

Let Un be a nondegenerate Lucas sequence with parameters P and Q= =+1, e = £1.
Then. every arithmetic progression az + b, where (a,b) = 1 which contains an odd integer ng
with the Jacobi symbol (1—%) equal to €, contains infinitely many strong Lucas pseudoprimes
n with parameters P and @ = 41 such that (g) = ¢ which are at the same time Lucas
pseudoprimes of each of the four types.
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A pseudoprime to base a is a composite n such that ¢! = 1 mod n.

An odd composite number n is an Euler pseudoprime to base ¢ if (e.n) =1
and c("~1)/2 = (£) mod n, where (£) is the Jacobi symbol.

Let D, P and Q be integers such that D = P2 — 4Q # 0 and P > 0.
Let Up =0, U, =1, V =2 and V; = P. The Lucas sequences U, and V, are
defined recursively for k > 2 by

Uk = PUi1 — QU o, Vi =PVi_1 - QVi_o.
For k > 0, we also have
k_ ak
Uk:u7 Vk‘:ak+ﬁk:
a—pj

wnere a and /3 are distinct roots of 22 — Pz + Q = 0.
We shall consider non-degenerate Lucas sequences, i.e. Uy 0 if k> 1 (ie.
a/B is not a root of unity which is equivalent with D = P2 — 4Q # 0, -2Q, -3Q).

For an odd prime n with (n,@D) =1 we have (cf. 2], [7]):
Un_(%)(P,Q)EOmod n, (1)
2000 Mathematics Subject Classification: primary 11A07; secondary 11B39.

97



98 Andrzej Rotkiewicz

D
Un(P,Q) = (—) mod n, (2)
n
Vo(P,Q) = P mod n, (3)
Vn~(2) = QQ(l_(%))/2 mod n. (4)
For every positive integer n the congruences (1), (2) and (3) are linearly
dependent modn:
We have
D
AU (Q)+B(Un—(z>)+C(Vn—Vl)—0 (5)
in which

and

Thus if (n,2P@QD) = 1 any two of the congruences (1), (2), (3) imply the
other one.
Now we shall prove the following

Proposition P. The natural number n, where (n,2QD) = 1 satisfies (1), (2),
(3) and (4) if and only if either

(DY _.  ._ : Do e
\—n—}—l, a"=amodn and [ =pJgmodn

or
(—):—1, o"=pf3modn and [" =« modn.

1, (n,2QD) =1, o™ = aamodn, 3" # mod n, then
"t~ 3"l =0modn and U,—y = Omod n, o™ — " = a — S mod n, hence
(@ =p")/(a=p) = 1modn, (a"—")/(a~8) = () modn; o + " =

a+pgmodn, V, = Pmodn; o™ 14571 =14 1=2=2Q0-(2))/2 ped n,

Il

Vn%g) = 200=(2))/2 ;mod 1.

If (%) = -1, n,@D) = 1, &" = Fmodn and 3 = a modn, then
ot = admodn, g"*! = af mod n, hence (a"+1 — 3"t /(e — 3) = 0 mod n,
Un_(g) =0modn; a" — " = 3 — amodn, hence (a" — ") /(a— ) = -1 =

(Z2)modn, U, = (2) modn; a" + 3" = f+amodn, V, = P mod n: a™! +

n

gt = Ba+af =208 = 2Q<1>(%))/2 mod n, Vn_(g) = 2Q(1_(%))/2 mod n.
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Conversely, if n, where (n,2QD) = 1, satisfies the congruences (2) and (3)
then for (£) =1 we have am 4 37 = a+fFmodn, (" - 3")/(a—3) = 1modn,
hence a™ 4+ 87 = a+fmodn, a” — 5" = a — fgmodn, 2a" = 2a mod n,
24" = 23 mod n and since (n, 2QD) =1 we have o™ = a mod n, §" = £ mod n.

If n, where (n, 2QD) = 1, satisfies the congruences (2) and (3) then for
(%) = —1 we have (a” —8") /(e —pB) = —1mod n, a™ + B" = a+ Bmodn,

hence o™ — 3" = 3 — @ mod n, "+ 3" = f+amodn, 20" = 23 mod n, 23" =
20 mod n and since (n, 2QD) =1 we have " = 3 mod n, *"=amodn. |

A composite n is called a Lucas pseudoprime with parameters P and Q if
(n,2QD) =1 and (1) holds.

Many results have been published about these numbers (see [1], [2], 3], [4],
(61, 7], [8), [91, [10], [11]. [12], [13]).

Simple examples show that a composite n satisfying one of the congruences
(1), (2), (3), (4) does not necessarily satisty the others. It is easy to check that the
humber 323 = 17 .19 ig a Lucas pseudoprime with parameters P = 1, @ =-1
but does not satisfy the congruences (2), (3) and (4). Hence three other kinds of
pseudoprimes can be distinguished (see [2]).

A composite n such that the congruence (3) holds are called Dickson pseu-
doprime with parameters P and @ (see 5], [6]).

A composite number n such that the congruence (2) holds are called Lucas
pseudoprime of the second kind with parameters P and Q.

Yorinaga (see [14]) proved that there exist infinitely many Lucas pseudo-
primes of the second kind with parameters P — 1, @ = —1. He also published
(see [14]) a table of all 109 such numbers n up to 707000. The least such number
is n = 4181 = 37 - 113. The number 4181 is also the least composite number n
which satisfies all congruences (1), (2), (3) and (4) for P = 1, @=-1.

A composite number n which satisfies the congruence (4) is called Dickson
pseudoprime of the second kind with parameters P and Q.

Remark. If D is a square and » is a Carmichael number with (n.@D) =1 then

all congruences (1), (2). (3) and (4) hold. Indeed. if D is a'square (n.QD) =

1 and
n is a Carmichael number then o and 3 are rational integers # 0, (£2) = 1 and
(@™ = 3" 1) /(o = ) = 0mod n: (a” — A")/(a — §) = (a - 5)/(‘113 ~-f)=1=
(%) mod n: a" 438" = a4+ B mod n and a"~? +4" 1 =2= 2Q(1_(7))/2 mod n

In 1994 Alford. Granville & Pomerance (see [1]) proved that there are in-
finitely many Carmichael numbers.

If D is asquare, a > 1 is a positive integer, 3 = +1 that is P = a + 1,
@ ==xa, (n,2QD) =1 and n is a Lucas pseudoprime with parameters P and Q
then a” = a modn, f" = (£1)" = £1 mod n and by proposition P the number
n satisfies all congruences (1), (2), (3) and (4).

The following problems arise

Problem 1. Let D be a square, P and @ be given integers, (P, Q) +# (ax1, ta)
ie. f#+1.

Do there exist in every arithmetic progression ax + b, where (a,b) =1,
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infinitely many

a) Lucas pseudoprimes of the second kind with parameters P and Q?
b) Dickson pseudoprimes with parameters P and Q7
¢) Dickson pseudoprimes of the second kind with parameters P and Q?

For example: do there exist infinitely many composite n such that 3" +2" =
5 mod n in every arithmetic progression ax + b, where (a,b) =17

Problem 2. Given integers P,Q # +1 with D = P? — 4Q not a square, do there
exist infinitely many

VT I D O Oy JEL SN BRI J Y I 5 T 1 D
a’} Lucas pseudoprimes of the second kind with parameters P and Q7

b’} Dickson pseudoprimes with parameters P and Q7
¢"} Dickson pseudoprimes of the second kind with parameters P and Q?
d’) Arithmetic progressions formed from three different Dickson pseudoprimes?

Problem 3. Find a composite n with (2) = -1, (n,2PQD) =1, @ # *1

n

which satisfies all congruences (1), (2), (3) and (4). Do there exist infinitely many
such composite n?

An odd composite n is an Fuler-Lucas pseudoprime with parameters P and

@ (see [11]) and
U(n—(%))/? =0modn if (%) =1

or
Vin-(2))y2 = 0modn if (E) =1

We shall prove the following

Theorem 1. If n is an Euler-Lucas pseudoprime with parameters P and  and
n Is an Euler pseudoprime to base @), (n,P) =1, then n satisfies all congruences
(1), (2), (3) and (4).

Proof. We have (see [10])

Vi = QUY/2P = DUy 1)9Un 112 (6)
Vn + Q(n_l)/QP = Vv(n-—l)/?‘/(nJrl)/Q- (7)
Since n is an Buler-Lucas pseudoprime with parameters P and ( we have
Q
U(n_(%))/QEOmodn if (E) =1 (8)
v, D =0modn if Q =-1 (9)
(n=(2))/2 n '

Let (%) = 1. Since n is an Euler pseudoprime to base @ we have Q("~1/2 =
(2) = 1 mod n.
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n=\n

By (8) we have U( (2))/2 = 0 mod n, hence

DU 1y/2Uns1y72 = 0mod n,
and from (6) we get
V, - QU V2P =0modn and since Q" Y2 =1modn

we have V,, = Pmod n and n is a Dickson pseudoprime with parameters P and
@, and since n satisfies the congruence (1) and (3), (n,2PQD) = 1, hence n
satisfies all congruences (1), (2), (3) and (4).

If (%) = —1, then since n is an Euler pseudoprime to base @}, we have

V(n_(g))/Q = 0 mod n, hence

V(n—l)/Q ’ V(n_;,_l)/g = Omod n.

Since Q('"1/2 = —1mod n, be (7) we have Vy, + (~1)P = Omodn and V, =
Pmodn and n is a Dickson pseudoprime with parameters P and @, and since
n satisfies the congruence (1) and (3), hence n satisfies all congruences (1), (2),

(3) and (4). [ ]

Theorem 2. If n is an Euler-Lucas pseudoprime with parameters P and @,
(n,2PQD) =1 and n is a Dickson pseudoprime with parameters P and Q, then
n s an Euler pseudoprime to base Q.

Proof. Suppose that n is an Euler-Lucas pseudoprime with parameters P and
Q.
Let (£) = 1 then by (8), U(n-(2y)2 = Omodn, hence by (6), V; —

QU"D/2P = 0modn and V, = Q""V/2P mod n. Since n is a Dickson pseu-
doprime with parameters and Q we have V, = P modn. Thus Q"~1D/2p =

Pmodn and since (n, P) =1 we have Q("~1/2 = | = (%) modn.

Since n is a Dickson pseudoprime with parameters ;3 and ¢} we have V,
Pmodn. Thus Q"~D/2P = P mod n and since (n, P) = 1 we have Q12

e

1= (%) modn.
If (Q) = —1 then by (9) we have V(n_(g))/z = Omodn, hence

n-m

n
Vin-1)/2V(n41)72 = 0mod n hence by (7), Vi, = —Q~1/2P mod n.

Since n is a Dickson pseudoprime with parameters P and @ we have V,, =
Pmodn. Thus —Q"~1/2P = P mod n andsince (n, P) =1 wehave Q("~1)/2 =
-1= (%) mod 7 and in the both cases we have Q("—1)/2 = (%) mod n and n is
an Euler pseudoprime to base . [ ]

R. Baillie and S. S. Wagstaff (see 2], Theorem 5) proved the followin
orem:

Suppose (n,2QD) =1, U, = (%) mod n, and n is an Lucas pseudoprime
with parameters P and (Q.

If n is an Euler pseudoprime to base @, then n is an Euler-Lucas pseudo-
prime with parameters P and (.

Now we shall prove the following theorem
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Theorem 3. If a square-free number n is a Dickson pseudoprime of the second
kind with parameters P and Q, and n is an Fuler pseudoprime to base Q, then
n Is an Euler-Lucas pseudoprime with parameters P and Q.

Proof. If n is a Dickson pseudoprime of the second kind with parameters P and
2, then

o=(8) 4 5= (2) = 20(-(8))/2 mod n,
We consider four cases.
DT (2) =1, (2) =1, then
a" '+ 3" =2 mod n,
a(n—l)/? _ﬂ(n—l)/Q
(=

2
) + 2(a5)(”_1)/2 =2modn

and since n is an Euler pseudoprime to base @, Q("~1/2 = (%) = 1 mod n,
2(ap)*1/2 =2 mod n.

a3
we get n | Upory/o = U(ﬂ_(%))ﬂ. (—(;::-) =1 and n is an Euler-Lucas pseudoprime

2
. . (n—~1)/2__p(n—1)/2
Thus since n is squarefree and (n,D) =1, from n | D (“ 8 )

with parameters P and Q.
b) If (2) =1, (£) = 1, then

a™ 14 3" =2 mod n,

((Jzﬁ)("“l)/2 = (Q) = —1 mod n,

n
(@""D/2 4 gn=D/232 _ 2(0,8)("=1)/2 = 2 mod n and since n is an Euler pseudo-
prime to base @, Q" 1/2 = (£) = —1 mod n, hence —2(a3)™ /2 = 2 mod n.

Thus since n is squarefree from n | (a”‘l)/2+x3("‘1)/2)2 we get that
n | a"mD/2 4 gn-1/2 (%) = —~1 and n is an Euler-Lucas pseudoprime with
parameters P and Q.

o) If (£) =-1. (—f{-) = 1. then

o™t 4 4"+ = 2 mod n.

/2\ 2

) + 2(&6)("+1)/2 = 2o mod n

and since n is an Euler pseudoprime to base Q. (%) = 1 we have Q"= 1/2
(9) = 1 mod n. hence 2(a3)**tY/2 = 203 mod n.

n

I

QP12 g(nt1)/2
a—g
n | Unyrye = U(n—(%))/2’ (%) =1 and n is an Euler-Lucas pseudoprime with

2
Thus since n is squarefree (D,n) = 1. n | D( ) we get

parameters P and ().

. ~Il
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d) If (7) = -1, (£) = -1, then

¥4
o™ 4 3" = 208 mod n,

(a("+l)/2 + ﬁ("+l)/2) g 2(a3)™ /2 = 2053 mod n.

Since n is an Euler pscudoprime to base @ with (%) = —1 we have (a3)("~1)/2 =
—l mod n, hence ~2(ag)"+1)/2 = 2a mod n.
Thus since n is squarefree from n | a1/ ,[7’(”“)/2)2 we get
2 — (2 2 _ _ .
n | an+)/2 4 @(n (Bhr2 _ V(n—(%))/r (%) = ~1 and n is an Euler-Lucas
pseudoprime with parameters P and Q. |

A composite n is called ¢ strong Lucas pseudoprime with parameters P and
Q (see [} if (n,2QD) =1, n — (2) =25 .1, 1 odd and either

n

-

Ur=0modn or Vi, =0modn for some ¢, 0 <t < s. (10)

In the joint paper [13] with A. Schinzel we proved the following theorem T.

Theorem T. Given integers P, Q with D = P2 —4Q +# 0, -Q,—-2Q, ~-3Q and
¢ = +1, every arithmetic progression ax + b, where (a, b) = 1 which contains an
odd integer ny with ( %) = ¢ contains infinitely many strong Lucas pseudoprimes
n with parameters P and Q such that (%) = ¢. The number N(X) ofsuch strong
pseudoprimes not exceeding X satisfies

log X

N(X) > C(P,Q,a,b,E)w ,

where ¢(P.Q,a,b,¢) is a positive constant depending on P,Q,a.b,<.

Every strong Lucas pseudoprime with parameters P and Q is an Euler-Lucas
pseudoprime with parameters P and Q (see [2]) and Q»—1)/2 = (%) mod n for
noddand Q =1, or Q = —1, thus from theorem 1 and theorem T it follows the
following

Theorem 4. Let U,, be a nondegenerate Lucas sequence with parameters P and
Q = £1. Then, every arithmetic progression ax + b, where (a,b) = 1 which
contains an odd integer ng with ( %) = € contains infinitely many strong Lucas

pseudoprimes n with parameters P and Q = %1 such that (2) = &, which

satisfy congruences (1) (2), (3) and (4) simultaneously and the m?mber N(X) of
strong pseudoprimes n

b
] Y
ot exceeding X

n
A z

PR s
H i

g
log X

N(X) > ¢(Pa,b)—2"_
(X) > e(P.a )log log X
where c(P,a,b) is a positive constant depending on P, q,b.

The above theorem extends the theorem 2 of my paper [10] that if a and
b are fixed coprime positive integers, @ = +1, (P,Q) # (1,1), D=P? —4Q
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then in every arithmetic progression ax + b there exist infinitely many composite
n such that we have simultaneously

D
Un_(2> =0modn, U,= (—) modn, V, =V modn.

n
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