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ON SUMS OF THREE UNIT FRACTIONS WITH POLYNOMIAL
DENOMINATORS

Abstract: The equation m/(ax +b) = 1/F1(z) + 1/F2(x) + 1/F3(x) is shown to be impossible
under some conditions on polynomials ar + b and Fy, Fp, Fj3.
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A well known conjecture of Erdés and Straus [2] asserts that for every integer
n > 1 the equation
4 1 1 1
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is solvable in positive integers x;,zs.x3. Sierpinski [10] has made an analogous
conjecture concerning 5/n and the writer has conjectured that for every positive
integer m the equation
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is solvable in positive integers xy, z2, z3 for all integers n > no(m) (see [10], p. 25).
For m < 12 one knows many identities
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ar+b  Fi(z)  Falz) | Fi(x)
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where a,b are integers, a > 0 and F; are polynomials with integral coeflicients
and the leading coeflicients positive, see [1], [5], [7], [8], [11], Section 28.5. It could
seem that a proof of solvability of (2) for a fixed m and n > ng(m) could be
obtained by producing a finite set of identities of the form (2) with a fixed a and
b running through the set of all residues mod a. The theorems given below show
that this is impossible.
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188 A. Schinzel

Theorem 1. Let a,b be integers, a > 0, (a,b) = 1. If b is a quadratic residue
moda, then there are no polynomials Fy, Fp, Fy in Z[z] with the leading coeffi-

] 18] ; ; with = NDmod A
clents positive, satisfymg (2) Witdl 171 = UImoa 4.

Theorem 2. Let m,a,b be integers, a > 0, m > 3b > 0. There are no polyno-
mials Fy, F3, Fy in Z[z] with the leading coefficients positive, satisfying (2).

Theorem 1 in the crucial case m = 4 has been quoted in the book [4] (earlier
inaccurately in [3]), but the proof has not been published before. The theorem is
closely related to a result of Yamamoto [12] and the crucial lemma is a consequence
of his work. Possibly, Theorem 2 can be generalized as follows. Let k, m,a,b be
positive integers, m > kb. There are no polynomials Fi, Fs, ..., F} in Z[z] with
the leading coefficients positive such that

Note that by a theorem of Sander [9] the above equation has only finitely many
solutions in polynomials F; for fixed a,b,m and k.
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Notation. For Q C Rlz] we shall denot 0

the leading coefficient positive.

For two polynomials A, B in Z[z], not both zero, we shall denote by (A, B)
the polynomial D € Z[z]* with the greatest possible degree and the greatest
possible leading coefficient such that A/D € Z[z] and B/D € Z[x].

Lemma 1. If A B C,D are in Z[z], (A,B) =1 and A/B = C/D, then C =
HA, D=HB foran H € Zlz]. If (C,D) =1 then H = *1.
Proof. This follows from Theorem 44 in [6], the so called Gauss’s lemma. u
Lemma 2. The equations

n® =4(cs — b )b*r — s (3)
and .

n®s =4(cs — b*)b*r — 1 4)

have no solutions in positive integers b* c,n,T,s.

Proof. This is a consequence of Theorem 2 in [12]: according to this theorem n?
does not satisfy either of the two congruences

n* = —s(mod 4a*b*), (5)

2
n-s
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where a*,b*, s are positive integers and s | a* + b*, while just su
follow from (3) and (4) with ¢* = cs — b*. The i ibili
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(5) and (6) is established in [12] by evaluation of the Kronecker symbol (—s/ab);
instead one can use the Jacobi symbol as follows.

(3) gives n? = (4b*cr —1)s — 4b*?r, (4) gives (ns)? = (db*crs — 1)s — 4b*2rs,
while for e = 2%y > 0, ey odd, we have by the reciprocity law ([6], Section 42)

*2 *
e N\ _ (e _ (—1yteo-n2 (AbTes —1
4b*es — 1 4b*es — 1 eq

e (2 <

€0

Proof of Theorem 1. It is clearly sufficient to prove the theorem for m = 4.
Assume that we have (2) with m = 4. Thus

AR (2) Fa(2) F3(z) = (az + b)(Fa(2) Fa(2) + Fy(2)F3(2) + Fy (2) Fa (),

hence

[t we had Fi(—b/a) = 0 for each i < 3, then there would exist polynomi-
als G; € Qz]* such that Fi(z) = (az + b)G;(z). Since (

lows from Gauss’s lemma that G; € Z[z]*. Choosing an integer & such that
(ak + b)G1(k)G2(k)G3(k) # 0 we should obtain

a, by = 1 it fol-

1 1 1
4= + + <3,
Gi(k) ' Ga(k) " Ga(k)

a contradiction.

Hence, up to a permutation of Fy, Fy, F5 there are two possibilities
Fi(=b/a) = Fa(—bja) = 0 # Fy(~b/a), (7)

Fi(=b/a) = 0 # Fy(~b/a)Fsy(~b/a). (8)

In the case (7) Fi(z) = (az + b)Gi(z) (i = 1,2), (Fs(z), az + b) = 1, where
Gi € Z[z]*. Let us put

H;,C\R, S are in Z[z]t and we have (H,, H,) = 1, (RH\H5,5) = 1. By (2)
with m =4
ar + b - 4DH1H2 — H; - H> . 4RH1H2 -8

F3 DH, H, ~ RH,H,
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Since (ax +b,F3) =1 = (4RH,H; — S,RH,H>)} and both F3 and RH,H; are in
Z[z]*, it follows by Lemma 1 that

ar+b=4RH Hy — § = 4(CS — Hy)HyR — S. 9)
Since b is a quadratm residue for a and C, h’g,R,S are in Z[$]+ there exist

integers k and n such that
) 2 1 1% T os3 N o~ -1y ~TN . fd
ak+b=n" and b = Hy(k), c=C(k), r = R(k), s=S(k) areinZ*,

which in view of (9) contradicts Lemma 2.
Consider now the case (8). We have here

where G, € Zlg|t, D = (Fa, Fy), (Ha, Hy) = 1 and (DH,,az+b) =1 (i = 2.3)
H; € Z[z]*. Hence, by (2) with m =4

4 . 1 H; 4+ Hy
ar+b - (a$+b)G1 + DH>H, )
DHQHg . Gl(Hg—{—Hg)
az+b 4G -1

(10)

Let us put C = (D,Hy + H3), D =CR, Hyo 4+ H3 = CS, so that C,R, S
are in Z[:v]+ Since (DH2H3 az +b) =1 we infer from Lemma 1 that 4G; —1 =

{rmr wrhars I -~ 1T,

ax TU)lll, wnere i1) < mle' . nence, oy (LU},
RHHy Gy
S  Hy
Since (RH2H3.5) =1 = (G1.Hy) and S and H; are in Z[z]* it follows from
Lemma 1 that H; = 5, G, = R i, Hy and
(az +b)S =4G, — 1 =4RHH3 — 1 = 4(CS — Hy)H,R — 1. (11)

Since b is a quadratic residue moda and C,Hs, R, S are in Z[z|* there exist
integers k£ and n such that

ak+b=n> and b = Ha(k), c=C(k), r = R(k). s=S(k) arein Z*.

which in view of (11) contradicts Lemma 2. |

Proof of Theorem 2. If Fi(0) # 0 for all 7 it follows from (2) on substituting

- n a1 N

z =0 that
3
>
— F;(0
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contrary to the assumption m > 3b.
If F;(0) # 0 for all but one i, it follows from (2) o
z—0

R
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a contradiction.
If Fi(0) = 0 for all 4, it follows Fy(z) = 2G,(z), G; € Z[z]* and by (2)

3
mx 1
ar +b ‘Z;G(m)

When z — oo the terms on the left hand side are less than the limit m/a,

he terms on the right hand side are greater or equal to the limit, which contradicts
the equality.

Thus F;(0) = O for exactly two i < 3 and we may assume without loss of

generality that

et

Fi(0) =0 (i =1,2), F3(0) # 0.
A15u1115 as in the proof of Theorem 1 we infer that F;(—b/a) = 0 for at least one
. Hence up to a permutation of Fy, Fy there are the following possibilities:
(12) Fi(=b/a) =0(i = 1,2.3);
) Fi(=b/a)=0(i=1,2), F3(=bja) #0
) Fi(=b/a)=0(i =1,3), Fy(-bfa)#£0
(15) Fi(=b/a) #£0(i =1,2), F3(—b/a) = 0:
) Fi-b/a) £0(i=1,3), Fy(~b/a) =0

Case (12). Here Fi(z) = (az + b)G;(z), G; € Qz]* (i = 1,2,3) and by Gauss’s
lemma (a,b)G, € Z[z]*. Taking an integer k such that G;(k) # 0 we obtain from
(2)
- 1
" — < A LN o a9l
T = > 9la,0) >~ o0
S Giky — Y =

contrary to the assumption.
Case (13). Here Fi(z) = z(azx + b)G,(z), G; € Qz]* (i = 1,2)

1 1 ar +b

"= zG1(z) + zGa(x) Fs

and taking the limit for z — co we infer that F3 = cz+d, where ¢ = a/m. Hence

N 1 1 +b—md
U= .
e BTN —




192 A. Schinzel
For = large enough the first two terms are positive, hence b — md < 0 and d > 0.

Without loss of generality G2(—d/c) =0, hence G2 = (cx + d)H2(z), Ha €
alal,

thus G,(z) = ¢/(md — b) and

md—b 1 b—md (md-b)d 1
0: . + ok e 1 AN ET + BN | = o e L AN of e 4 ANET T
cL LU\CLL'—f—U/)HQ CL + d LL'\CLU-'—LL} LL'\'LL'-'—U,)HQ
This is impossible, since for z large enough both terms on the right hand side are

positive.

Case (14). Here F} = z(az + b)G1, F2 = G2, F3 = (ax + b)G3, where G, €
Q[z]* (:=1,2,3) and

1 ar + b 1
IL‘Gl + :L‘GQ + G_g
The first and the second term on the right hand side are greater than their limits
for x — o0, the third term is greater or equal, while the left hand side is constant:
this gives a contradiction.
Case (15). Here F; = 2G;, (i = 1,2), F3 = (az + b)G3, where G; € Z[z|",
Gi(=b/a) #£0 (i=1,2), G3 € Q[z]* and

mT 1 1 T

ax b  Ci@) | Ga@) | (az + 0)Ga(m)
If G3 € @t all three terms on the right hand side are greater than or equal to their
limits for £ — oo, while the left hand side is less than the limit, a contradiction.
Hence G3 = ¢ € Q% and

(m-1/gle 1 1
ar +b G, G
which contradicts G1G2(—b/a) # 0.
Case (16). Here I\ = 2G,, F» = z{az + b)Gy, where G, € Zlz]*, G2 € Q[z]|*
and

?

me 1 1 T
=t
ar+b G (az+b6)Gy  Fy
If deg '3 = 0 we take the limit for z — oo and obtain m/a = oo, a contradiction.
If deg F5 > 1, when = — oo the left hand side of (17) is less than its limit,
while all three terms on the right hand side are greater than or equal to their
limits, which gives a contradiction. Thus

(17)

degF5 =1, F3 =cz +d, where c € Z*, d/c#£ b/a. (18)
We consider four subcases:
(i) deg G, > 1,
(i) deg G, =1, G1/F5 ¢ Q;
(iii) degGr =1, G1/F3€Q;



e —
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Subcase (i). Taking the limit for z — oo we infer from (17) and (18) that a = em
and

me 1 n 1 n T
emz+b  Gi (emz+b)Gy  cx+d
cc(md—b)_cmaz+b+ 1

cx+d G Gy’

hence md —b >0, d > 0. When z — oo the left hand side of (18) is less than its

limit, while both terms on the right hand side are greater than or equal to their
limits, which gives a contradiction.

(19)

bease (ii). As in the subcase (i) we have md—b> 0,d > 0. Let G, = ez + f,
0

Su e
e /e #bja,d/c. Tt follows from (19) that

Ga = g‘l(cas +d)(ex + f). g€ QT

and substituting = 0 we obtain

0=—-+ -7 g=—bd <0,

1 =¢€ '{cz +d), e € Q7. We obtain from (i7) and (18)

mzx 1 T+e

ar +b  (ax+b)Gy  cx+d’

hence Gy = f~'(cz +d), f € Qt and substituting z = 0

a contradiction.

Subcase (IV) Let G} =g It follows from (17) and (18) that Gy = g‘l(cgg _lrd)’
ecQr,
mx 1 n e n T
ax+b g (ax+b)ecx+d) cx+d

and multiplying both sides by (az + b)(cz + d)

(cgm — ac — ag)x® + (dgm — bg — ad — be)x — bd — € = 0.

Hence
(20) cgm —ac—ag =0,
(21) dgm — bg —ad — be = 0,

(22) bd + e =0,
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which is impossible, since (20) gives gm — a = ag/c > 0, (21) gives

d= (bg+bc)/(gm —a) > 0, contrary to (22). [
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