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INEQUALITIES FOR THE GRADIENT OF EIGENFUNCTIONS
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Abstract: In this paper we shall consider properties of the eigenfunctions of the Laplace-
Beltrami operator A, and properties of its gradient for a proper domain [J with a conformal
metric, which density is equal to the reciprocal value of a defining function p(z) for this domain
ie. ds = p~1(z)|dx]|.
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Throughout this paper n is an integer greater than 1, D is a domain in the
Euclidean space R™ , B(a,7) = {r € R*||z — a] < r} denotes the open ball
centered at a of radius r, where |z| denotes the norm of z € R™ and B is the
open unit ball in R™. Let dV(z) denote the Lebesque measure on R", do the
surface measure.

We shall say that a locally integrable real valued function f on D possesses
tha HTI,-nronertv with a constant . if
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c
fla) € — f(z)dV(z) whenever B(a,r)C D
¥ JB(a,r)

for some ¢ >0 dependmg only on n.
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[4] Hardy and Littlewood essentially proved that ju|”, p > 0, n = 2 also possesses
the H L-property whenever ¢ is a harmonic function in D. In the case n > 3 a
generalization was made by Fefferman and Stein |3] and Kuran [5]. An elementary

proof of this can be found in [7]. In fact the author proved the following theorem:
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1Neorein A. il a4 nonnegavive, 1ocail 7 IIL srapic TUNCLIoNn _[ pthUbbUb l.uUU 15 Ls-
property, with a constant c, then fP, p > 0 also possesses the HL-property but
with a different constant ¢, depending only on ¢,p and n.
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The following theorem was proved in [8]:

Theorem B. Let D be a proper subdomain of R*, f € C?(D) such that

Af@l < T su sup_ () @

z€B{a,r) sCB{ar
where K, Ko are positive constants independent of B(a,r) C D. Then |f|? pos-
0

*a y) le=r £Im g
sesses the H L-property. If (1) holds with Ko = 0, then |Vf|P possesses the

HUL-property.
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peCYDy), DCDy, dp, #0, when =z € dD and p(z) >0,

The proof of the fact that a defining function exists for every proper domain
D C R™ with C? boundary can be found in [9]. Observe that this defining function
is not unique. For example, if p(z) is a defining function then cp(z), ¢ > 0 is also
a defining function for the same domain.

In this paper we shall consider a proper domain D with a conformal met-
ric whose density is equal to the reciprocal value of a defining function for this
domain i.e. ds = p~(z)|dz|. For such a metric the volume element is dV,(z) =

p " (z)dV (z), the surface area element is do,(z) = p'~"(z)do(z), the norma.l
derlva.tlve is —L p(m) 5=, the gradient is V,f = p(z)Vf, and the Laplace-

Beltrami operator is

R 3 9 2—mn 8f
Bof =7 g (p 5_;) (2)

see, for example [1].

In section 2 we shall prove a few auxiliary results.

In section 3 we shall generalize Theorem B and among other results, we
shall prove that the eigenfunctions of the Laplace-Beltrami operator A, and the
norm of its gradient possesses the H L-property, especially the solution to T.aplace-
Beltrami operator possesses the H L-property. More precisely, we shall prove:

Theorem 1. If f is an eigenfunction of the Laplace-Beltrami operator A p then
IfIP and [V f|P,p > 0 possesses the HL-property.

Also we shall give some inequalities for the eigenfunctions and the norm of its
gradient. The most important is the following:

Theorem 2. If f is an eigenfunction of the Laplace-Beltrami operator A,, then

| e pav, < c | plpav, p>0, a>o

where the constant C depends only on D,p,n, A and a.
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One can find some other classes of functions which possess the H L-property

in (7], [8] and [10].
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2. Preliminaries

One can easily prove the following:

Lemma 1. Let K be convex compact subset of R™. If f € C'(K), then
(Ve > 0)(36 > 0)(Va,y € K)(lz—y| < 6 = |f(2)-f(¥)—(V/(y), z—y)| < elz—y]).

By Lemma 1 and the Heine-Borel theorem we obtain:

Lemma 2. Let K be compact connected subset of domain D C R™. If f €
C*(D), then
(Ve > 0)(36 > 0)(Vz,y € K)(jz—yl <6 = |f(z)-f(y)—(V(y), z—y)| < elz—y]).

Lemma 3. If p(z) is a defining function for a proper domain D C R™ then there
are A, B > 0 such that Ad(z, dD) < p(z) < Bd(z,0D) whenever x € .

Proof. For any = € D there is z,, € 8D such that d(z,znm) = d(x, D).
By Lemma 2

1p(z) — p(@m) = (Vo(@m), T — Tp)| < €lz —zm| when |z —zm|<d.
Since p(zn,) = 0, it follows that
10(2)] > [(Vp(@m),& — )| — el — Tl ,  When & — zm| < 6.

On the other hand, the vector x — z,, is orthogonal on the tangential hyper-
plane of the hypersurface p(z) = 0 in z,, i.e. Vp(z,) and & — x,, are colinear
vectors. Therefore

[(Vo(@m), © — Zm)| = [Vo(zm)] |2 — zm]
from which we get
p(@)] > (Vp(an) = Oz = oml,  when o — 2| <5
Since p(x) is a defining function then Vp(z) # 0, = € D. Consequently from
p € CY(D) we get that mingcap |Vo(z)] =m > 0. For € < m choosing € = m/2
we get |p(:c)| > m|x Tm]ie. p(z) > |:1: Tm| when z is in the §-neighbourhood
of 8D. The set D) = {:z € D| d(z, BD) 6} is compact, therefore p(z) has a

minimum AM;j > 0. In the same manner we can conclude that d(x,8D) has a

maximum Mz >0 in D;. For ¢ < M1 /M, , ¢ > 0 we get p(z) > cd(x,dD), = €
D;. From all of the above we conclude that we can choose A = min (c, _r_;,) )
From

lo(x)] = |p(z) = plem)| < | — 2m| sup [Vl + (2m — 2)1)]
t€(0,1]

< |& — @l sup [Vp(2)|
z€D

c'(D). o ' m
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Hereafter we shall consider that the defining function p(z) is a real valued
C? function.

(ST PR

Then next lemmnia is a special case O
Riemannian manifolds.

the Green’s formula which is valid on

Lemma 4. Let p(z) be adefining the function of D, and let function f € C?(D).
Then

3. Proof of the main results

In this section p(x) is a defining function for a proper domain D C R™ with a

conformal metric with density equal to the reciprocal value of the deﬁning function

for this domain i.e. ds = p~!{z)|dz|, A, is the corresponding Laplace-Beltrami

operator for such a metric.
The following three lemmas generalize Theorem B in the case Ky = 0.

Lemma 5. Let D be a proper subdomain of R™, f € C?(D) such that
c

@< S s |

for some ¢ > 0 and k € N, whenever B(a,r) C D. Then

IVf(a)l € —k sup |f(z) - f(a)l,

z€B(a,r)

for some ¢y > 0, whenever B(a,r) C D.

o
']
)
)
=
w
;

ince D is a proper domain we can suppose that r € [0,1]. Also, it is
enough to prove the theorem for closed balls in D.
In (8], the following inequality was proved:

n
Vfla)] < — sup z)| + r su Af(zx)|,
Vi@ < s @)+ s AfE)

whenever B(a,r) C D for f € C%(D).

By translations we can reduce the proof to the case a = 0. Let B(0, p) p) cD
and My = supgq , |f(z)|. Choose & € B(0,p) so that the function g(z) =
|V (z)l(p — |z|)* attains its maximum at & € B(0, p). This implies that on the

ball B (&, p_zlal) we have:
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From the hypotheses we have

~ sup |Vf(3)l,

IVFa) < o
IVf(@)| € n+1tF cpas

where s=r+t, r,t > 0.
Let s = pzl 4 and Mo r — 2,,“ From that we have —(c:—;,ci)rtkﬂ—t elal

n+itk
It is easy to see that this equation has a unique positive root to which belongs
to the interval ( I“') Since t € (0,1) we have (E% + 1) 2’“', which
implies I ( 5 ) <r <Ly ( 5 ') for some L1, Ly > 0. From all of the above

2k+12|vf(a)| ie. |Vf(a)| <

QTLMf < 2;‘“an

n
Vi(a)| € —Mjy + < — -
|V£(a)l rod r Ll(p—|a|)’°

g 26tInM,  2kt1p

FaY ™ r/intl k_‘ - vy rrtAN] s 1A 1N - P o o
9(0) = |Vi(0)ip" < IVf(@)ilp—lal)" < T =7 sup [f(z).
1 1 zeB(0,p)
Applying the above to the function f (z) - b, b€ R and puting b = f (0) we
obtain the desired result. |

Lemma 6. Let D be a proper subdomain of R", f € C)(D) such that

for some ¢ > 0 and k € N. whenever Bla,»

- =" 2.

0) possesses the H_L-property.

Proof. We may assume that B C D, in contrary we shall consider the function
fla+rz), for r < d(a,dD) it 1sdeﬁned on B. Also we may assume that [, |f| =1

and B C D.

Let g(z) = |f(z)|(1 — |z|)™. Since g € C(B), glss = 0, there is

) ap
a € B so that the function g(x) attains its maximum ie. g(z) < g(a), = € B.
By the mean value theorem we have

|f(z) = f(a)| £ sup |Vf(a+ h(z —a))||z|, where z € B(a,t) C B.
helo,1)
By the hypotheses we get

t
If@I<1f(@)+ = sup |f(z)l, for s=t+r, z€ Batb)
T z€B(a,s)
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Now choose t,7 > 0 such that t +r = _l_—zl_al and %2— = z—nlwr As in the proof of
the previous lemma we can conclude that this system has a unique solution and
there are L1, Ls > 0 such that L:(1 —la])* <t < L.(1 ~ |a|)*.

On B (a, %’l) we have

kn n
1- |a|) o _ (1 —1aD* |f(a)]

@< (1o ~ " f(a)].

tal

kn
(T_—Ig—!—wﬂrl__—'a"\
\ | 207

Therefore |f(a)| < |f(2)|+ 1| f(a)l, for x € B(a,t) ie. |f(a)| < 2|f(x)|. Integrat-
ing this inequality over B(a,t) we obtain

f , )
wrlf@l<2 [ f@ldvim) <2,
B(a,t)

which implies

2 (55]
< < A
If(a)l 'Untn (1 ___ ]a[)k“

From that we have |f(0)] < c1 = c1 f; |f|dV, as desired.
So, the function |f| possesses the HL-property. Thus by Theorem A we

obtain that the function |f|P possesses the H L-property for every p > 0. [ ]
Lemma 7. Let D be a proper subdomain of R", f € C(D) such that
c
IVi(@)| < % sup |f(z)— f(a)|
T z€B(a,r)

for some ¢ > 0, and k € N, whenever B(a,r) C D. Then {Vf|? (p > 0) possesses
the HL-property.

Proof. By Theorem A it is enough to prove that there is a ¢ > 0 such that the
function |V f|? possesses the H L-property.
Also it is enough to prove the inequality

VO < / IV /(2)|7dV ().
B
Let g(z) = f(z) — f(0) then
V9(0)] < 2% sup lg(a)],
™ zerB

where rB = B(0,r).



Inequalities for the gradient of eigenfunctions of the Laplace-Beltrami operator 125

By Lemma 6, |g|P possesses the HL-property for every p > 0. Thus, we
have

k+1 2k+1

25T ¢
[V£(0)| = |Vg(0)| < —5— sup |g(z)| < —
r €5 B r

C C
= la@lav (@)
rB

Ca

-2 / lo@lav (@)

Taking r = 1 we obtain

v/ < [ la@lav @) = [ | / )] av o

<o [ [ 19502 elaiav(@) = s [ (vrl [
Js o Jo VTS,

= Cy [ I\\7fl.y.\| I..y! |y|—n — 1drvrl,.y.\ < 52_ f ivfl,.y.)l iyll'nd'\ff‘"y)
-]Bl \Y)| 1] n \)\njB \9J ¥ \
since from y = ta we have 0 < |yl = tiz| <t < 1. By Holder’s inequality we get
1/p

Choose p > 1, such that the last integral converges. Using polar coordinates
we have

1
f t 1—{m—1Ym = - ¢ /- I. —fer 1Y a1 PN 1
j lyl * ”"W(y):j p - PpT tao(()dp = ;
B o Js (n—-1)(1+p)+1
for 25 > p > 1. For such p we obtain g = ;%5 such that the function |V f|?
possesses the H L-property. | |
We are now in a position to prove Theorem 1

Aof = P(AS — (n— 2)%(VP, V).

So, the eigenfunction of the Laplace-Beltrami operator satisfies the partial diffeen-
tial equation

A r 7 r\\]"ﬁ ‘_""_/\f
Af — [n—é);\VP, Vi) = e
Fl'om this we have tyl 1 ogl 7 [ 2
R e PRI
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If max_ 55 [Vp(z)] = M, and A is a constant chosen in a manner described in the
proof of the Lemma 3, then

MIVS(@ln-2) A If(3)]

|Af(z)] < A d(z, 3D) A? d(=, oD)?

Thus the eigenfunction satisfies the condition (1). By Theorem B we get
that the function |f|?,p > 0 possesses the H L-property.
Let us now show that |V f|?, p > 0 possesses the H L-property. Let Bla,r) C

pRRtaote Vil Sa 4y g 2ae |

‘D, by Lemma 4 and since f is an eigenfunction of the Laplace-Betraml operator
we have:

sos) [ av@=-a [ - s+ [ s,

B(a,r) aB(a,r) 0Ny

Hence
iﬁw’(a)if W@ <IN [ /(=) - j(a)|dvp(x)+j ';f]
B(a,r) B(ar) 3B(a,r) | 9Ny

[ @ s@iae = [ | [ st apa ave

JB(a,r) J Bfa,r) JO
1
= [ [t ), - apat] vy
J B{a,r) {/O !
< sup |V f(z) |z — aldV,(z)
z€ B(a,r) B(a,r)
<r sup |Vf(z) dV,(z)
€ B(a,r) B(a,r)
and

0
I f’da <M, sup IVf(fv)![ do,
JoB(axr) |On,] z€B(a,r) JaB(a,r)

where M, = max_ 5 |p(x)|, we obtain

f@B(a r) doﬂ
|Apf(a)l < sup V()] | r|A| + M, ——2T—— | (3)
B(GJ’" rn/_ IY d‘/p(m)
A&7 \ Y B(a,r) /
whenever B(a,r) C D.
By Lemma 3 we have
do da(f)ﬂ_
faB(a’r) L o< o)) faB(a r) d¢,5D whenever B{a,r) C D

av(x) !
fB(“'»") de (:1’; fB(a.,r) d(x,dD)n
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It is clear that Bf(a,r/2) C B(a,d(a,0D)/2). If z € B(a,d(a,8D)/2), we can
conclude that ) 3
%d(a, 8D) < d(x,9D) < d(a, 8D). (4)

From that we get

faB( /2) d(ed'ago(_f?n— Jon do(§) diam(D
ar . (a,r/2) iam(D)
iz S C2d(a,0D)F dV(z) SG—/—

JrB(a,r/Z) d{z,dD)" J B(a,r/2)
From (3) and (5) we have

r diam(D K
A, 7(@) < sup |VF(@)] (—|«\| +Mpc3#) <X wp Vi)
B(a,r/2) 2 T T B(ar/2)

Thus

1

K
Af@)] < 5 sup |V(o)

=C B(a,r)

whenever B(a,r) C D.
By Lemma 5 and Lemma 7, we obtain that |V f(z)|P,p > 0 possesses the
H L-property.

Lemma 8. If f is an eigenfunction of the Laplace-Beltrami operator A pr then
CI@P < [ v >0 (6)
™ JB(zr)
whenever B(z,r) C D, where C = C(p,n, ) is a constant.
Proof. By Theorem 1, we have
Cy

|f(2)P < F‘—] : |f|PdV, whenever B(z,r)C D.
B(z,r

By Lemma 5, we have

L=

V(2 < sup | f(y)!. (7)

YEB(x,r)

From (7) we get

\ND

vrer < (5, e o)

Y€ B(z,r/2)

Since oo
Far < & ] [PAV,  ye Blz,r/2),
r B(y,r/2)
we have oo
sip |7 < 2 [ |gpray,
veB(z/2) ™ JBGr)

and thus (6) follows. u
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Proof of Theorem 2. Let us put r = d(a,dD)/2 in (6), we have

2 K {
d(a,0D)P|Vf(a)|P < ——l—-«-—j |f(=)|PdV ().
’ = d(a, D) Jp(a,d(a,80)/2)
Since, by Lemma 3 there are A, B > 0 such that
Ad(a,0D) < p(a) < Bd(a, dD), (8)
whenever a € D, we have
PV < o [ I(=)Pav(z). ©)

= d(a,0D)" Jp(a,d(a,6Dy/2)
Multiplying (9) by p*(a)dV,(a) and then integrating over D, we obtain

[ o~ 32(a)|V £ (@) PV (a)

D
gC/—pf:(a—)— F()PdV (z)dV,(a).
p d(a,8D)* B(a,d(a,aD)/2)| (@) v (z)avs(

By Fubini’s theorem we have

[ @) f
Jp d(a, D) Jp(a.aa,50y/2)

= / |f(z)P [ Tp—-_,g\f_:)*r—di/;,(a)dV(m),
JD JE(E) d(a, dU)"

where E(x) = {a|x € B(a,d(a,0D)/2)}. From (8) we have
p*(a)
Lier [ e
T a *=2ngdV (a x).
<¢ [ 5@ [ da oDy aviaava)

From (4), we obtain

<C / | f(z)|Pd(z, OD)*> 2" [ dv(a)dV (z).
JD E(z)

Using (8) one more time, we obtain
[ ir@pra@,opy> [ aviave)
D E(z)

" a—2n
< /le(m)l”p (@) fE V@)
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Since FE(z) C {a||la~ x| < d(z,dD)} we get jE( ydV(a) < Cd(z, 8D)" < Cp™(2).
Thus

j |/ ()P o>~ () j dV (a)dV (z)
D
JURY A -
ng | F(z)|Fp™ ™ (z)dV (z) = (/j f(x)P p*(x)dV, ().
D
From all of the above we obtain the result. |

Remark. Throughout the above proof we used C to denote a positive constant

wrlhials ey seaeer Fom v

1: 13
WilliLll IJllay valy l1liulll iine lJU 1ifie.

Lemma 9. If f is an eigenfunction of the Laplace-Beltrami operator A,, for
A#£0, then

[f(a)| < C(r—l———\ sup |V f(z)|, whenever Bfa,r) C D,
r z€B(a,r)

where C is a constant depending only on D, A and n.

Proof. Let B(a,r) C D. By Lemma 4 and since f is an eigenfunction of Laplace-
Betrami operator we have

@) - @)+ [ 2L

né- .. F 2 YUY
v D{&,T) v O (&, ) 4

Afla) / - dV,(z) = /

| 2 Y
\U-,T

do,.

If we literarly quote the proof of the second part of Theorem 1 we obtain our

result. B

Lemma 10. If f is an eigenfunction of the Laplace-Beltrami operator A,, for
A #0, then

by <= [ 1vi@Pave) (10)

s N
v D(a,r)

p > 0, whenever B(a,r) C D, where C is constant depending only on D, p, A
nd n.

l)

Proof. By Theorem 1, we get
C
|V f(a)P € —n] |V f|PdV, whenever B(a,r)C D.
r B{a,r

On the other hand, by Lemma 9, we have

- N

(@) sK(wﬁ) sup |V ()| (11)

zEB(a,r)
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From (11) we get:

7/ 1 NP / \ P
F(@)I < (2K)? ( + sup Vi)l - (12)
T|Al y€B(a,r/2)
Since
p o O P
Vi < o ViPaV, ye Bla,r/2)
™ JB@.r/2)
we have .
wp VIP< o [ viav (13)
y€B(a,r/2) ™ JB(ar)
Inequality (10) now follows from (12) and (13). |

By Lemma 10, in the same manner as in Theorem 2, we can prove the
following:

Theorem 3. If f is an eigenfunction of the Laplace-Beltrami operator A,, for
A # 0, then

[ Fr@i@Pw,@ <c [ 1vi@es@,e, p>0, >0

o LS

where C is constant depending only on D,p,n, A and «.
We leave the proof of this theorem to the reader.
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