INEQUALITIES FOR THE GRADIENT OF EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR

STEVO STEVIĆ

Abstract: In this paper we shall consider properties of the eigenfunctions of the Laplace-Beltrami operator Δ_{ρ} and properties of its gradient for a proper domain D with a conformal metric, which density is equal to the reciprocal value of a defining function $\rho(x)$ for this domain i.e. $ds = \rho^{-1}(x)|dx|$.

Keywords: eigenfunction, Laplace-Beltrami operator, HL-property, density.

1. Introduction

Throughout this paper n is an integer greater than 1, D is a domain in the Euclidean space \mathbf{R}^n , $B(a,r) = \{x \in \mathbf{R}^n | |x-a| < r\}$ denotes the open ball centered at a of radius r, where |x| denotes the norm of $x \in \mathbf{R}^n$ and B is the open unit ball in \mathbf{R}^n . Let dV(x) denote the Lebesque measure on \mathbf{R}^n , $d\sigma$ the surface measure.

We shall say that a locally integrable real valued function f on D possesses the HL-property, with a constant c, if

$$f(a) \leqslant \frac{c}{r^n} \int_{B(a,r)} f(x) dV(x)$$
 whenever $B(a,r) \subset D$

for some c > 0 depending only on n.

For example, subharmonic functions possess the HL-property with c=1. In [4] Hardy and Littlewood essentially proved that $|u|^p$, p>0, n=2 also possesses the HL-property whenever u is a harmonic function in D. In the case $n \ge 3$ a generalization was made by Fefferman and Stein [3] and Kuran [5]. An elementary proof of this can be found in [7]. In fact the author proved the following theorem:

Theorem A. If a nonnegative, locally integrable function f possesses the IIL-property, with a constant c, then f^p , p > 0 also possesses the HL-property but with a different constant c_1 depending only on c, p and n.

The following theorem was proved in [8]:

Theorem B. Let D be a proper subdomain of \mathbb{R}^n , $f \in C^2(D)$ such that

$$|\Delta f(a)| \leqslant \frac{K}{r} \sup_{x \in B(a,r)} |\nabla f(x)| + \frac{K_0}{r^2} \sup_{x \in B(a,r)} |f(x)| \tag{1}$$

where K, K_0 are positive constants independent of $B(a, r) \subset D$. Then $|f|^p$ possesses the HL-property. If (1) holds with $K_0 = 0$, then $|\nabla f|^p$ possesses the HL-property.

A function $\rho(x)$ shall be called (globally) a defining for the domain D if $\rho \in C^1(D_1)$, $\overline{D} \subset D_1$, $d\rho_x \neq 0$, when $x \in \partial D$ and $\rho(x) > 0$, $x \in D$.

The proof of the fact that a defining function exists for every proper domain $D \subset \mathbf{R}^n$ with C^1 boundary can be found in [9]. Observe that this defining function is not unique. For example, if $\rho(x)$ is a defining function then $c\rho(x)$, c>0 is also a defining function for the same domain.

In this paper we shall consider a proper domain D with a conformal metric whose density is equal to the reciprocal value of a defining function for this domain i.e. $ds = \rho^{-1}(x)|dx|$. For such a metric the volume element is $dV_{\rho}(x) = \rho^{-n}(x)dV(x)$, the surface area element is $d\sigma_{\rho}(x) = \rho^{1-n}(x)d\sigma(x)$, the normal derivative is $\frac{\partial f}{\partial n_{\rho}} = \rho(x)\frac{\partial f}{\partial n}$, the gradient is $\nabla_{\rho}f = \rho(x)\nabla f$, and the Laplace-Beltrami operator is

$$\Delta_{\rho} f = \rho^{n} \frac{\partial}{\partial x_{i}} \left(\rho^{2-n} \frac{\partial f}{\partial x_{i}} \right) \tag{2}$$

see, for example [1].

In section 2 we shall prove a few auxiliary results.

In section 3 we shall generalize Theorem B and among other results, we shall prove that the eigenfunctions of the Laplace-Beltrami operator Δ_{ρ} and the norm of its gradient possesses the HL-property, especially the solution to Laplace-Beltrami operator possesses the HL-property. More precisely, we shall prove:

Theorem 1. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ} , then $|f|^p$ and $|\nabla f|^p$, p > 0 possesses the HL-property.

Also we shall give some inequalities for the eigenfunctions and the norm of its gradient. The most important is the following:

Theorem 2. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ} , then

$$\int_{D} \rho^{\alpha+3p} |\nabla f|^{p} dV_{\rho} \leqslant C \int_{D} \rho^{\alpha} |f|^{p} dV_{\rho}, \quad p > 0, \quad \alpha > 0,$$

where the constant C depends only on D, p, n, λ and α .

One can find some other classes of functions which possess the HL-property in [7], [8] and [10].

2. Preliminaries

One can easily prove the following:

Lemma 1. Let K be convex compact subset of \mathbb{R}^n . If $f \in C^1(K)$, then $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x, y \in K)(|x-y| < \delta \Rightarrow |f(x)-f(y)-\langle \nabla f(y), x-y \rangle| \leq \varepsilon |x-y|)$.

By Lemma 1 and the Heine-Borel theorem we obtain:

Lemma 2. Let K be compact connected subset of domain $D \subset \mathbb{R}^n$. If $f \in C^1(D)$, then

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x, y \in K)(|x-y| < \delta \Rightarrow |f(x)-f(y)-\langle \nabla f(y), x-y\rangle| \leqslant \varepsilon |x-y|).$$

Lemma 3. If $\rho(x)$ is a defining function for a proper domain $D \subset \mathbb{R}^n$ then there are A, B > 0 such that $Ad(x, \partial D) < \rho(x) < Bd(x, \partial D)$ whenever $x \in D$.

Proof. For any $x \in D$ there is $x_m \in \partial D$ such that $d(x, x_m) = d(x, \partial D)$.

By Lemma 2

$$|\rho(x) - \rho(x_m) - \langle \nabla \rho(x_m), x - x_m \rangle| < \varepsilon |x - x_m| \quad \text{when} \quad |x - x_m| < \delta.$$

Since $\rho(x_m) = 0$, it follows that

$$|
ho(x)| > |\langle
abla
ho(x_m), x - x_m \rangle| - \varepsilon |x - x_m|$$
, when $|x - x_m| < \delta$.

On the other hand, the vector $x - x_m$ is orthogonal on the tangential hyperplane of the hypersurface $\rho(x) = 0$ in x_m i.e. $\nabla \rho(x_m)$ and $x - x_m$ are colinear vectors. Therefore

$$|\langle \nabla \rho(x_m), x - x_m \rangle| = |\nabla \rho(x_m)| |x - x_m|$$

from which we get

$$|\rho(x)| > (|\nabla \rho(x_m)| - \varepsilon)|x - x_m|, \quad \text{when} \quad |x - x_m| < \delta.$$

Since $\rho(x)$ is a defining function then $\nabla \rho(x) \neq 0$, $x \in \partial D$. Consequently from $\rho \in C^1(\overline{D})$ we get that $\min_{x \in \partial D} |\nabla \rho(x)| = m > 0$. For $\varepsilon < m$ choosing $\varepsilon = m/2$ we get $|\rho(x)| > \frac{m}{2}|x - x_m|$ i.e. $\rho(x) > \frac{m}{2}|x - x_m|$ when x is in the δ -neighbourhood of ∂D . The set $D_1 = \{x \in D | d(x, \partial D) \geqslant \delta\}$ is compact, therefore $\rho(x)$ has a minimum $M_1 > 0$. In the same manner we can conclude that $d(x, \partial D)$ has a maximum $M_2 > 0$ in D_1 . For $c < M_1/M_2$, c > 0 we get $\rho(x) > cd(x, \partial D)$, $x \in D_1$. From all of the above we conclude that we can choose $A = \min\left(c, \frac{m}{2}\right)$.

From

$$|
ho(x)| = |
ho(x) -
ho(x_m)| \le |x - x_m| \sup_{t \in [0,1]} |\nabla
ho(x + (x_m - x)t)|$$

$$\le |x - x_m| \sup_{x \in \overline{D}} |\nabla
ho(x)|$$

we can conclude that we can choose $B = \sup_{x \in D} |\nabla \rho(x)|$. B is finite since $\rho \in C^1(\overline{D})$.

Hereafter we shall consider that the defining function $\rho(x)$ is a real valued C^2 function.

Then next lemma is a special case of the Green's formula which is valid on Riemannian manifolds.

Lemma 4. Let $\rho(x)$ be a defining the function of D, and let function $f \in C^2(\overline{D})$. Then

$$\int_{B(a,r)} \Delta_{\rho} f dV_{\rho} = \int_{\partial B(a,r)} \frac{\partial f}{\partial n_{\rho}} d\sigma_{\rho} \quad \text{ whenever } \ \overline{B(a,r)} \subset D.$$

3. Proof of the main results

In this section $\rho(x)$ is a defining function for a proper domain $D \subset \mathbf{R}^n$ with a conformal metric with density equal to the reciprocal value of the defining function for this domain i.e. $ds = \rho^{-1}(x)|dx|$, Δ_{ρ} is the corresponding Laplace-Beltrami operator for such a metric.

The following three lemmas generalize Theorem B in the case $K_0 = 0$.

Lemma 5. Let D be a proper subdomain of \mathbb{R}^n , $f \in C^2(D)$ such that

$$|\Delta f(a)| \leqslant \frac{c}{r^k} \sup_{x \in B(a,r)} |\nabla f(x)|$$

for some c > 0 and $k \in \mathbb{N}$, whenever $B(a, r) \subset D$. Then

$$|\nabla f(a)| \leqslant \frac{c_1}{r^k} \sup_{x \in B(a,r)} |f(x) - f(a)|,$$

for some $c_1 > 0$, whenever $B(a, r) \subset D$.

Proof. Since D is a proper domain we can suppose that $r \in [0, 1]$. Also, it is enough to prove the theorem for closed balls in D.

In [8], the following inequality was proved:

$$|\nabla f(a)| \leq \frac{n}{r} \sup_{x \in B(a,r)} |f(x)| + \frac{n}{n+1} r \sup_{x \in B(a,r)} |\Delta f(x)|,$$

whenever $B(a,r) \subset D$ for $f \in C^2(D)$.

By translations we can reduce the proof to the case a=0. Let $\overline{B(0,\rho)}\subset D$ and $M_f=\sup_{B(0,\rho)}|f(x)|$. Choose $\hat{a}\in B(0,\rho)$ so that the function $g(x)=|\nabla f(x)|(\rho-|x|)^k$ attains its maximum at $\hat{a}\in \overline{B(0,\rho)}$. This implies that on the ball $B\left(\hat{a},\frac{\rho-|\hat{a}|}{2}\right)$ we have:

$$|\nabla f(x)| \leqslant |\nabla f(\hat{a})| \sup_{x \in B\left(\hat{a}, \frac{\rho - |\hat{a}|}{2}\right)} \left(\frac{\rho - |\hat{a}|}{\rho - |x|}\right)^k = 2^k |\nabla f(\hat{a})|.$$

From the hypotheses we have

$$|\nabla f(\hat{a})| \leqslant \frac{n}{r} M_f + \frac{nc}{n+1} \frac{r}{t^k} \sup_{x \in B(\hat{a},s)} |\nabla f(x)|,$$

where s = r + t, r, t > 0.

Let $s = \frac{\rho - |\hat{a}|}{2}$ and $\frac{nc}{n+1} \frac{r}{t^k} = \frac{1}{2^{k+1}}$. From that we have $\frac{(n+1)}{cn2^{k+1}} t^k + t = \frac{\rho - |\hat{a}|}{2}$. It is easy to see that this equation has a unique positive root t_0 which belongs to the interval $\left(0, \frac{\rho - |\hat{a}|}{2}\right)$. Since $t \in (0,1)$ we have $\left(\frac{(n+1)}{cn2^{k+1}} + 1\right)t > \frac{\rho - |\hat{a}|}{2}$, which implies $L_1\left(\frac{\rho - |\hat{a}|}{2}\right)^k < r < L_2\left(\frac{\rho - |\hat{a}|}{2}\right)^k$ for some $L_1, L_2 > 0$. From all of the above we get

$$|\nabla f(\hat{a})| \leqslant \frac{n}{r} M_f + \frac{1}{2^{k+1}} 2^k |\nabla f(\hat{a})|$$
 i.e. $|\nabla f(\hat{a})| \leqslant \frac{2nM_f}{r} \leqslant \frac{2^{k+1} nM_f}{L_1(\rho - |\hat{a}|)^k}$.

Thus

$$g(0) = |\nabla f(0)| \rho^k \leqslant |\nabla f(\hat{a})| (\rho - |\hat{a}|)^k \leqslant \frac{2^{k+1} n M_f}{L_1} = \frac{2^{k+1} n}{L_1} \sup_{x \in B(0,\rho)} |f(x)|.$$

Applying the above to the function f(x) - b, $b \in \mathbf{R}$ and puting b = f(0) we obtain the desired result.

Lemma 6. Let D be a proper subdomain of \mathbb{R}^n , $f \in C^{(1)}(D)$ such that

$$|\nabla f(a)| \leqslant \frac{c}{r^k} \sup_{x \in B(a,r)} |f(x)|,$$

for some c > 0 and $k \in \mathbb{N}$, whenever $B(a,r) \subset D$. Then the function $|f|^p$, (p > 0) possesses the HL-property.

Proof. We may assume that $B \subset D$, in contrary we shall consider the function f(a+rx), for $r < d(a, \partial D)$ it is defined on B. Also we may assume that $\int_B |f| = 1$ and $\overline{B} \subset D$.

Let $g(x) = |f(x)|(1-|x|)^{nk}$. Since $g \in C(\overline{B})$, $g|_{\partial B} \equiv 0$, there is a point $a \in B$ so that the function g(x) attains its maximum i.e. $g(x) \leq g(a)$, $x \in B$. By the mean value theorem we have

$$|f(x)-f(a)| \leq \sup_{h \in [0,1)} |\nabla f(a+h(x-a))||x|$$
, where $x \in B(a,t) \subset B$.

By the hypotheses we get

$$|f(a)| \leq |f(x)| + \frac{tc}{r^k} \sup_{x \in B(a,s)} |f(x)|, \quad \text{for} \quad s = t + r, \quad x \in B(a,t).$$

Now choose t, r > 0 such that $t + r = \frac{1-|a|}{2}$ and $\frac{tc}{r^k} = \frac{1}{2^{nk+1}}$. As in the proof of the previous lemma we can conclude that this system has a unique solution and there are $L_1, L_2 > 0$ such that $L_1(1-|a|)^k < t < L_2(1-|a|)^k$.

On
$$B\left(a, \frac{1-|a|}{2}\right)$$
 we have

$$|f(x)| \le \left(\frac{1-|a|}{1-|x|}\right)^{kn} |f(a)| \le \frac{\left(1-|a|\right)^{kn} |f(a)|}{\left(1-\left|a+\frac{a}{|a|}\frac{1-|a|}{2}\right|\right)^{kn}} = 2^{kn} |f(a)|.$$

Therefore $|f(a)| \leq |f(x)| + \frac{1}{2}|f(a)|$, for $x \in B(a,t)$ i.e. $|f(a)| \leq 2|f(x)|$. Integrating this inequality over B(a,t) we obtain

$$|v_n t^n| f(a)| \leqslant 2 \int_{B(a,t)} |f(x)| dV(x) \leqslant 2,$$

which implies

$$|f(a)| \leqslant \frac{2}{v_n t^n} \leqslant \frac{c_1}{(1-|a|)^{kn}}.$$

From that we have $|f(0)| \leq c_1 = c_1 \int_B |f| dV$, as desired.

So, the function |f| possesses the HL-property. Thus by Theorem A we obtain that the function $|f|^p$ possesses the HL-property for every p > 0.

Lemma 7. Let D be a proper subdomain of \mathbb{R}^n , $f \in C^1(D)$ such that

$$|\nabla f(a)| \leqslant \frac{c}{r^k} \sup_{x \in B(a,r)} |f(x) - f(a)|$$

for some c > 0, and $k \in \mathbb{N}$, whenever $B(a,r) \subset D$. Then $|\nabla f|^p$ (p > 0) possesses the HL-property.

Proof. By Theorem A it is enough to prove that there is a q > 0 such that the function $|\nabla f|^q$ possesses the HL-property.

Also it is enough to prove the inequality

$$|\nabla f(0)|^q \leqslant \int_B |\nabla f(x)|^q dV(x).$$

Let g(x) = f(x) - f(0) then

$$|\nabla g(0)| \leqslant \frac{2c}{r^k} \sup_{x \in rB} |g(x)|,$$

where rB = B(0, r).

By Lemma 6, $|g|^p$ possesses the HL-property for every p>0. Thus, we have

$$egin{align} |
abla f(0)| &= |
abla g(0)| \leqslant rac{2^{k+1}c}{r^k} \sup_{x \in rac{r}{2}B} |g(x)| \leqslant rac{2^{k+1}c}{r^k} rac{c_1}{r^n} \int_{rB} |g(x)| dV(x) \ &= rac{c_2}{r^{n+k}} \int_{rB} |g(x)| dV(x). \end{split}$$

Taking r = 1 we obtain

$$\begin{split} |\nabla f(0)| \leqslant c_2 \int_B |g(x)| dV(x) &= c_2 \int_B \left| \int_0^1 f'(tx) dt \right| dV(x) \\ &\leqslant c_2 \int_B \int_0^1 |\nabla f(tx)| \ |x| dt dV(x) = c_2 \int_B |\nabla f(y)| \int_{|y|}^1 \left| \frac{y}{t} \right| dt \frac{1}{t^n} dV(y) \\ &= c_2 \int_B |\nabla f(y)| \ |y| \frac{|y|^{-n} - 1}{n} dV(y) \leqslant \frac{c_2}{n} \int_B |\nabla f(y)| \ |y|^{1-n} dV(y) \end{split}$$

since from y = tx we have $0 \le |y| = t|x| < t < 1$. By Hölder's inequality we get

$$|
abla f(0)| \leqslant rac{c_2}{n} \left(\int_B |
abla f(y)|^q dV(y)
ight)^{1/q} \left(\int_B |y|^{(1-n)p} dV(y)
ight)^{1/p}.$$

Choose p > 1, such that the last integral converges. Using polar coordinates we have

$$\int_{B} |y|^{-(n-1)p} dV(y) = \int_{0}^{1} \int_{S} \rho^{-(n-1)p} \rho^{n-1} d\sigma(\zeta) d\rho = \frac{1}{(n-1)(1+p)+1},$$

for $\frac{n}{n+1} > p > 1$. For such p we obtain $q = \frac{p}{p-1}$ such that the function $|\nabla f|^q$ possesses the HL-property.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. From (2) we have:

$$\Delta_{
ho}f=
ho^2(\Delta f-(n-2)rac{1}{
ho}\langle
abla
ho,
abla f
angle.$$

So, the eigenfunction of the Laplace-Beltrami operator satisfies the partial diffeential equation

$$\Delta f - (n-2)\frac{1}{\rho}\langle \nabla \rho, \nabla f \rangle = \frac{\lambda f}{\rho^2}$$

From this we have

$$|\Delta f| \leqslant \frac{|\lambda| |f|}{\rho^2} + \frac{(n-2)}{|\rho|} |\nabla f| |\nabla \rho|$$

If $\max_{x \in \overline{D}} |\nabla \rho(x)| = M_{\rho}$ and A is a constant chosen in a manner described in the proof of the Lemma 3, then

$$|\Delta f(x)| \leqslant \frac{M_{\rho}|\nabla f(x)|(n-2)}{A \ d(x,\partial D)} + \frac{|\lambda| \ |f(x)|}{A^2 \ d(x,\partial D)^2}$$

Thus the eigenfunction satisfies the condition (1). By Theorem B we get that the function $|f|^p$, p > 0 possesses the HL-property.

Let us now show that $|\nabla f|^p$, p > 0 possesses the HL-property. Let $\overline{B(a,r)} \subset D$, by Lemma 4 and since f is an eigenfunction of the Laplace-Betrami operator we have:

$$\Delta_
ho f(a) \int_{B(a,r)} dV_
ho(x) = -\lambda \int_{B(a,r)} (f(x) - f(a)) dV_
ho(x) + \int_{\partial B(a,r)} rac{\partial f}{\partial n_
ho} d\sigma_
ho.$$

Hence

$$|\Delta_
ho f(a)|\int_{B(a,r)} dV_
ho(x) \leqslant |\lambda| \int_{B(a,r)} |f(x)-f(a)| dV_
ho(x) + \int_{\partial B(a,r)} \left|rac{\partial f}{\partial n_
ho}
ight| d\sigma_
ho.$$

Since

$$\int_{B(a,r)} |f(x) - f(a)| dV_{\rho}(x) = \int_{B(a,r)} \left| \int_{0}^{1} f'(a + t(x - a)) dt \right| dV_{\rho}(x)$$

$$= \int_{B(a,r)} \left| \int_{0}^{1} \langle \nabla f(a + t(x - a)), (x - a) \rangle dt \right| dV_{\rho}(x)$$

$$\leq \sup_{x \in B(a,r)} |\nabla f(x)| \int_{B(a,r)} |x - a| dV_{\rho}(x)$$

$$\leq r \sup_{x \in B(a,r)} |\nabla f(x)| \int_{B(a,r)} dV_{\rho}(x)$$

and

$$\int_{\partial B(a,r)} \left| \frac{\partial f}{\partial n_{\rho}} \right| d\sigma_{\rho} \leqslant M_{\rho} \sup_{x \in B(a,r)} |\nabla f(x)| \int_{\partial B(a,r)} d\sigma_{\rho}$$

where $M_{
ho}=\max_{x\in\overline{D}}|
ho(x)|,$ we obtain

$$|\Delta_{\rho} f(a)| \leq \sup_{B(a,r)} |\nabla f(x)| \left(r|\lambda| + M_{\rho} \frac{\int_{\partial B(a,r)} d\sigma_{\rho}}{\int_{B(a,r)} dV_{\rho}(x)} \right), \tag{3}$$

whenever $\overline{B(a,r)} \subset D$.

By Lemma 3 we have

$$\frac{\int_{\partial B(a,r)} d\sigma_{\rho}}{\int_{B(a,r)} dV_{\rho}(x)} \leqslant C_{1} \frac{\int_{\partial B(a,r)} \frac{d\sigma(\xi)}{d(\xi,\partial D)^{n-1}}}{\int_{B(a,r)} \frac{dV(x)}{d(x,\partial D)^{n}}}, \quad \text{whenever } \overline{B(a,r)} \subset D.$$

It is clear that $B(a, r/2) \subset B(a, d(a, \partial D)/2)$. If $x \in B(a, d(a, \partial D)/2)$, we can conclude that

 $\frac{1}{2}d(a,\partial D) < d(x,\partial D) < \frac{3}{2}d(a,\partial D). \tag{4}$

From that we get

$$\frac{\int_{\partial B(a,r/2)} \frac{d\sigma(\xi)}{d(\xi,\partial D)^{n-1}}}{\int_{B(a,r/2)} \frac{dV(x)}{d(x,\partial D)^{n}}} \leqslant C_2 d(a,\partial D) \frac{\int_{\partial B(a,r/2)} d\sigma(\xi)}{\int_{B(a,r/2)} dV(x)} \leqslant C_3 \frac{diam(\overline{D})}{r}.$$
 (5)

From (3) and (5) we have

$$|\Delta_{\rho}f(a)| \leqslant \sup_{B(a,r/2)} |\nabla f(x)| \left(\frac{r}{2}|\lambda| + M_{\rho}C_3 \frac{diam(\overline{D})}{r}\right) \leqslant \frac{K}{r} \sup_{B(a,r/2)} |\nabla f(x)|.$$

Thus,

$$|\Delta f(a)| \leqslant \frac{K}{r^3} \sup_{x \in B(a,r)} |\nabla f(x)|$$

whenever $B(a,r) \subset D$.

By Lemma 5 and Lemma 7, we obtain that $|\nabla f(x)|^p$, p > 0 possesses the HL-property.

Lemma 8. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ} , then

$$(r^3|\nabla f(x)|)^p \leqslant \frac{C}{r^n} \int_{B(x,r)} |f|^p dV, p > 0$$

$$\tag{6}$$

whenever $B(x,r) \subset D$, where $C = C(p, n, \lambda)$ is a constant.

Proof. By Theorem 1, we have

$$|f(x)|^p \leqslant \frac{C_1}{r^n} \int_{B(x,r)} |f|^p dV$$
, whenever $B(x,r) \subset D$.

By Lemma 5, we have

$$|\nabla f(x)| \leqslant \frac{K}{r^3} \sup_{y \in B(x,r)} |f(y)|. \tag{7}$$

From (7) we get

$$|\nabla f(x)|^p \leqslant \left(\frac{8K}{r^3} \sup_{y \in B(x,r/2)} |f(y)|\right)^p.$$

Since

$$|f(y)|^p \leqslant \frac{C_1 2^n}{r^n} \int_{B(y,r/2)} |f|^p dV, \quad y \in B(x,r/2),$$

we have

$$\sup_{y \in B(x,r/2)} |f(y)|^p \leqslant \frac{C_1 2^n}{r^n} \int_{B(x,r)} |f|^p dV,$$

and thus (6) follows.

Proof of Theorem 2. Let us put $r = d(a, \partial D)/2$ in (6), we have

$$d(a,\partial D)^{3p}|\nabla f(a)|^p \leqslant \frac{C}{d(a,\partial D)^n} \int_{B(a,d(a,\partial D)/2)} |f(x)|^p dV(x).$$

Since, by Lemma 3 there are A, B > 0 such that

$$Ad(a, \partial D) < \rho(a) < Bd(a, \partial D),$$
 (8)

whenever $a \in D$, we have

$$\rho^{3p}(a)|\nabla f(a)|^p \leqslant \frac{C}{d(a,\partial D)^n} \int_{B(a,d(a,\partial D)/2)} |f(x)|^p dV(x). \tag{9}$$

Multiplying (9) by $\rho^{\alpha}(a)dV_{\rho}(a)$ and then integrating over D, we obtain

$$\int_{D} \rho^{\alpha+3p}(a) |\nabla f(a)|^{p} dV_{\rho}(a)$$

$$\leq C \int_{D} \frac{\rho^{\alpha}(a)}{d(a,\partial D)^{n}} \int_{B(a,d(a,\partial D)/2)} |f(x)|^{p} dV(x) dV_{\rho}(a).$$

By Fubini's theorem we have

$$\int_{D} rac{
ho^{lpha}(a)}{d(a,\partial D)^{n}} \int_{B(a,d(a,\partial D)/2)} |f(x)|^{p} dV(x) dV_{
ho}(a) \ = \int_{D} |f(x)|^{p} \int_{E(x)} rac{
ho^{lpha}(a)}{d(a,\partial D)^{n}} dV_{
ho}(a) dV(x),$$

where $E(x) = \{a | x \in B(a, d(a, \partial D)/2)\}$. From (8) we have

$$\int_{D} |f(x)|^{p} \int_{E(x)} \frac{\rho^{\alpha}(a)}{d(a, \partial D)^{n}} dV_{\rho}(a) dV(x)$$

$$\leq C \int_{D} |f(x)|^{p} \int_{E(x)} d(a, \partial D)^{\alpha - 2n} dV(a) dV(x).$$

From (4), we obtain

$$\int_{D} |f(x)|^{p} \int_{E(x)} d(a, \partial D)^{\alpha - 2n} dV(a) dV(x)$$

$$\leq C \int_{D} |f(x)|^{p} d(x, \partial D)^{\alpha - 2n} \int_{E(x)} dV(a) dV(x).$$

Using (8) one more time, we obtain

$$\int_{D} |f(x)|^{p} d(x, \partial D)^{\alpha - 2n} \int_{E(x)} dV(a) dV(x)$$

$$\leq C \int_{D} |f(x)|^{p} \rho^{\alpha - 2n}(x) \int_{E(x)} dV(a) dV(x).$$

Since $E(x) \subset \{a | |a-x| < d(x, \partial D)\}$ we get $\int_{E(x)} dV(a) \leq C d(x, \partial D)^n \leq C \rho^n(x)$. Thus

$$egin{aligned} &\int_D |f(x)|^p
ho^{lpha-2n}(x) \int_{E(x)} dV(a) dV(x) \ &\leqslant C \int_D |f(x)|^p
ho^{lpha-n}(x) dV(x) = C \int_D |f(x)|^p
ho^{lpha}(x) dV_
ho(x). \end{aligned}$$

From all of the above we obtain the result.

Remark. Throughout the above proof we used C to denote a positive constant which may vary from line to line.

Lemma 9. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ} , for $\lambda \neq 0$, then

$$|f(a)| \leqslant C\left(r + \frac{1}{r|\lambda|}\right) \sup_{x \in B(a,r)} |\nabla f(x)|, \quad \text{whenever} \ \ B(a,r) \subset D,$$

where C is a constant depending only on D, λ and n.

Proof. Let $\overline{B(a,r)} \subset D$. By Lemma 4 and since f is an eigenfunction of Laplace-Betrami operator we have

$$\lambda f(a) \int_{B(a,r)} dV_
ho(x) = -\lambda \int_{B(a,r)} (f(x) - f(a)) dV_
ho(x) + \int_{\partial B(a,r)} rac{\partial f}{\partial n_
ho} d\sigma_
ho.$$

If we literarly quote the proof of the second part of Theorem 1 we obtain our result.

Lemma 10. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ} , for $\lambda \neq 0$, then

$$(r|f(a)|)^p \leqslant \frac{C}{r^n} \int_{B(a,r)} |\nabla f(x)|^p dV(x), \tag{10}$$

p > 0, whenever $B(a,r) \subset D$, where C is constant depending only on D, p, λ and n.

Proof. By Theorem 1, we get

$$|\nabla f(a)|^p \leqslant \frac{C}{r^n} \int_{B(a,r)} |\nabla f|^p dV$$
, whenever $B(a,r) \subset D$.

On the other hand, by Lemma 9, we have

$$|f(a)| \leqslant K\left(r + \frac{1}{r|\lambda|}\right) \sup_{x \in B(a,r)} |\nabla f(x)| \tag{11}$$

From (11) we get:

$$|f(a)|^p \leqslant (2K)^p \left(r + \frac{1}{r|\lambda|}\right)^p \left(\sup_{y \in B(a,r/2)} |\nabla f(y)|\right)^p. \tag{12}$$

Since

$$|\nabla f(y)|^p \leqslant \frac{C2^n}{r^n} \int_{B(y,r/2)} |\nabla f|^p dV, \quad y \in B(a,r/2)$$

we have

$$\sup_{y \in B(a,r/2)} |\nabla f(y)|^p \leqslant \frac{C2^n}{r^n} \int_{B(a,r)} |\nabla f|^p dV. \tag{13}$$

Inequality (10) now follows from (12) and (13).

By Lemma 10, in the same manner as in Theorem 2, we can prove the following:

Theorem 3. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ} , for $\lambda \neq 0$, then

$$\int_D \rho^{\alpha+p}(x) |f(x)|^p dV_\rho(x) \leqslant C \int_D |\nabla f(x)|^p \rho^\alpha(x) dV_\rho(x), \quad p>0, \quad \alpha>0,$$

where C is constant depending only on D, p, n, λ and α .

We leave the proof of this theorem to the reader.

References

- [1] L. Ahlfors, *Möbius transformations in several dimensions*, University of Minesota, School of Mathematics (1981).
- [2] S. Axler, P. Bourdon and W. Ramey, *Harmonic function theory*, Springer-Verlag, New York 1992.
- [3] C. Fefferman and E. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137–193.
- [4] G. Hardy and J. Littlewood, Some properties of conjugate function, J. Reine Angew. Math. 167 (1931), 405-423.
- [5] U. Kuran, Subharmonic behaviour of $|h|^p(p > 0, h \text{ harmonic})$, J. London Math. Soc. 8 (1974) 529-538.
- [6] K. Muramoto, Harmonic Bloch and BMO functions on the unit ball in several variables, Tokyo J. Math. 11, no. 2, (1988), 381-386.
- [7] M. Pavlović, On subharmonic behaviour of functions on balls in \mathbb{R}^n , Publ. Inst. Math. (Belgrade) 55 (1994), 18–22.
- [8] M. Pavlović, Subharmonic behaviour of smooth functions, *Mat. Vesnik* 48 no. 1-2 (1996), 15-21.

- [9] R. Range, Holomorphic functions and integral representations in several complex variables, New York Berlin Heidelberg Tokyo, Springer-Verlag (1986).
- [10] S. Stević, An equivalent norm on BMO spaces, Acta Sci. Math. 66 (2000), 553-564.

Address: Matematicki Fakultet, Studentski Trg 16, 11000 Beograd, Serbia

E-mail: sstevic@ptt.yu; sstevo@matf.bg.ac.yu Received: 27 February 2001

